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What is time series analysis?

Time series
Possibly vector valued measurements xi, that are characterised by
an one dimensional index, which is usually the time, but could be
also a spatial direction.

Tasks
• Characterization of the source of the signal, pattern detection
and diagnosis
• Studying dependencies between different observables, e.g.
causal inference
• Prediction, modelling, and control
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Plan for this lecture

1 Prediction and modeling in nonlinear time series analysis
2 Bayesian approaches
3 Machine learning: reservoir computing, Long Short-Term

Memory
4 Software packages

Ressources:
• https://personal-homepages.mis.mpg.de/olbrich/ - in

particular the the lecture on Modeling and Prediction in "Data
analysis and Modeling".
• Kevin McGoff, Sayan Mukherjee, Natesh Pillai, Statistical
inference for dynamical systems: A review, Statist. Surv. 9:
209-252 (2015).
• TISEAN 3.0.1 Nonlinear Time Series Analysis package (in C
and FORTRAN) by Rainer Hegger, Thomas Schreiber and
Hoger Kantz
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https://personal-homepages.mis.mpg.de/olbrich/
https://personal-homepages.mis.mpg.de/olbrich/lecture_ntsa_slides_2.pdf
https://projecteuclid.org/journals/statistics-surveys/volume-9/issue-none/Statistical-inference-for-dynamical-systems-A-review/10.1214/15-SS111.full
https://projecteuclid.org/journals/statistics-surveys/volume-9/issue-none/Statistical-inference-for-dynamical-systems-A-review/10.1214/15-SS111.full
https://www.pks.mpg.de/tisean/Tisean_3.0.1/index.html


Prediction and Modeling

Deterministic dynamics

xxxn+1 = FFF (xxxn)

which reduces to

xn+1 = F (xn, . . . , xn−m+1)

in the case of delay embedding.
Local methods: Basic idea: Looking for similar events in the past

and using their future for prediction.
• Local constant: Using the average as prediction.
• Local linear: Fitting a linear model for similar
events, i.e. neighbors in phase space.

Global models: Parameterizing the function FFF and fitting the
parameters.
• Polynomials
• Radial basis functions
• Neural networks
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Local constant prediction — lzo

We want to predict xn+1.
1 Looking for similar events in the past. Formally, looking for xxxk

with |xxxn − xxxk| ≤ ε, thus xxxk ∈ Uε(xxxn)
2 Then our prediction is

x̂n+1 = 1
|Uε(xxxn)|

∑
k:xxxk∈Uε(xxxn)

xk+1

Parameter:
• Embedding parameter: delay d and embedding dimension m
• Minimal number of neighbours and/or neighbourhood size
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Local constant prediction

Lorenz system, m = 5, d = 5
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Advantage: High flexibility and robustness.
Disadvantage: Bad approximation of FFF (xxxn).

• Large bias at the boundaries.
• Dynamics more regular than the original one.

Optimal number of neighbours: trade-off between bias and
variance of F̂FF
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Local linear prediction — lfo

We want to predict xn+1.
1 Looking for similar events in the past. Formally, looking for xxxk

with |xxxn − xxxk| ≤ ε, thus xxxk ∈ Uε(xxxn)
2 Now our prediction is not the average of the futures of the

similar from the past, but made by a linear model of these
events with

x̂n+1 = AAAnxxxn + bbbn

being the optimal linear predictor for the xk+1.
Parameter:
• Embedding parameter: delay d and embedding dimension m
• Minimal number of neighbours and/or neighbourhood size
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Local linear prediction

Lorenz system, m = 5, d = 5
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Advantage: High flexibility, better model than local constant
model

Disadvantage: Less robust than local constant, in particular with
noisy data
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Global models — Polynoms

FFF (xxx) =
∑

i1,...,im

ai1i2...imx
i1
n x

i2
n−1 . . . x

im
n−m+1

with the sum going over all m-tupel (i1, . . . , im) with
∑m
k=1 ik ≤ p.

Parameter:
• Embedding parameter: delay d and embedding dimension m
• Order of the polynom p. p = 1 corresponds to a linear model.
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Polynomial models - Example

Lorenz system: m = 5, p = 3
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d=10 Forecast errors:

d = 1 1.153983e-04
d = 5 7.063427e-05
d = 7 6.116494e-05
d = 10 7.397461e-05

Advantage: Easy to interprete (at least in some cases)
Disadvantage: Very often unstable — trajectory becomes

unbounded, explosion of number of parameters
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Global models — Radial Basis Functions

F (xxx) = a0 +
p∑
k=l

akΦ(||xxx− yyyi||)

• Functions Φ(r) are bellshaped, i.e. maximal at r = 0 and
rapidly decaying towards zero with increasing r.
• Number and width of the functions Φ being fixed, the
estimation of the ak is a linear problem and could be
estimated using least squares.
• rbf in TISEAN uses Gaussians with the standard deviation of
the data
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Least square estimation (LSE)

How do we fit the models?
• The model

x̂n+1 =
∑
i

aifi(xxxn) xxxn = xn, xn−1, . . . , xn−m+1

• Root mean square error

RMSE =

√√√√ 1
N −m

N∑
n=m+1

(x̂n − xn)2

• Minimizing the RMSE gives for each i one equation of the
form

0 = 1
N −m

N∑
n=m+1

(xn −
∑
k

akfk(xxxn−1))fi(xxxn−1)

• System of linear equations for the ai
Time series analysis 12/31



Maximum Likelihood (ML)

• Likelihood: L = p(xN , xN−1, . . . , x2, x1|a1, . . . , aK)
• Likelihood from an explicit assumption about the distribution
of the errors:

xn+1 =
∑
i

aif(xxxn) + εn+1

L =
N∏

n=m+1
p(εn)

L =
N∏

n=m+1
p(xn −

∑
i

aifi(xxxn−1))

• Maximum likelihood: We want to find the parameters of our
model, that maximize the likelihood of observing our data.
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Equivalence between LSE and ML

• Log-Likelihood

logL =
N∑

n=m+1
log p(εn)

• If the errors are Gaussian

p(ε) = 1√
2πσ2

e−
ε2

2σ2

log p(εn) = −1
2 log(2πσ2)− 1

2σ2 (xn −
∑
i

aifi(xxxn−1))2

maximizing the log likelihood is equivalent to minimizing the
root mean square error.
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Problems with ML estimation Overfitting

Increasing the number of terms in the function approximation will
increase the likelihood on the given data. But, it might not be better on
new data. What can be done about it?
• Cross-validation: Dividing your data in training and test data.

Fitting the model on the training data and evaluating the likelihood
on the test data. Repeat the procedure with different partitions in
training and test data and average. Problem. Not feasible if you
have very small data sets.

• Model costs (regularization): Include in your cost function not only
the prediction error, but also a term that gets larger for larger
models. For instance, the Akaike Information Criterion (AIC) adds a
cost term to the log likelihood that is proportional to the number of
parameters divided by the number of data points.

• Conceptionally appealing is minimal description length (MDL)
principle by Rissanen: The more parameters the model has the more
bits are needed to ecode the model, but the less bits are needed for
encoding the residuals. The best model is the model which leads to
the shortest encoding of the data.
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Some general remarks — Modelling

• Prediction 6= Modelling. Minimizing the one-step prediction error
leads usually to good short term predictions, but not to nessecarily
to good models (in particular for chaotic systems).

• The model might be
• Unstable, i.e. the trajectory diverges (polynom).
• Converge to an attractor at different positions in the phase

space.
• Model shows qualitatively different behavior than the data,

e.g. periodic instead of chaotic (lzo-run)
• One possibility: minimizing n-step prediction errors instead of only

the 1-step prediction error. Minimizing the n-step prediction error is,
however, already a non-linear problem. Thus there are
computational problems and also problems of existence and
uniqueness.

• Nonlinear state space models (dynamical + measurement noise)

xn+1 = F (xxxn) + ξn yn = xn + εn
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Bayesian inference

• Simplified notation:

data : p(data) :=p(x1, . . . , xN )
parameter : p(aaa) :=p(a1, . . . , aK)

Likelihood : p(data|aaa)

• Aim is to estimate the posterior

p(aaa|data) = p(data|aaa)p(aaa)
p(data)

• Prior distribution should encode prior knowledge about the
problem
• For model estimation one could use the maximum a posteriori
probability (MAP) estimate, the mean or the median of the
posterior.
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Bayesian inference Pro and cons

Advantages
• Prior distribution could act as a regularization term
• Posterior provides not only an estimate of the model
parameters but also about its uncertainty

Disadvantages
• Higher computational costs
• Inference of the full posterior often not feasible
• No clear procedure to determine the prior
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Choosing the prior

• In case of an uniform prior MAP is equivalent to ML.
• Often conjugate priors are used. They allow for a closed form
expression of the posterior: the posterior has the same
algebraic form as the prior, but different parameters. For
instance, the Gaussian distribution is self conjugate. The
problem is, that the conjugate prior might be hard to justify
as representing "prior knowledge".
• On the other side "prior knowledge" is also not well defined
and some people want to use "uninformed" or "objective"
priors.
• In the case of time series analysis we can paramterize the
same model differently. Therefore, in order to encode the
same prior knowledge, different prior distributions have to be
used for different parametrizations.
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Example: Autoregressive model

xn =
p∑
i=k

akxn−k + εn

The parameters ai can be transformed into freqencies and damping
constants of stochastically driven harmonic oscillators:

zp −
p∑

k=1
akz

p−k =
p∏

k=1
(z − zk) zk = rke

iφk

frequencies fk = φk
2π∆ ∆ is the sampling time

damping γk = 1
τk

= −∆−1 log rk

In order to be stable, the zk have to be in the unit circle. But what
about the ditribution?
On the other side, often exponential priors are used for the ai.
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Machine Learning

• There seems to be an ongoing debate about the difference of
"statistical inference" and "machine learninng". But, a core
point seems to be that machine learning is mainly concerned
about predictions and less about interpretable models.
• In this sense also many parts of time series analysis is more on
the side of machine learning than on the side of statistical
modeling or inference
• Practically, machine learning, and in particular deep learning,
is working with artifical neural networks.
• Thus, we will look at two architectures that are also used in a
time series context: "reservoir computing" or "liquid state
machines" and "Long Short-term memory" (LSTM).
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Neural networks

• Input layer xxx, output layer yyy
• One layer neural network:

yi =F (
∑
j

wijxj)

yyy =F (WWWxxx)

with F being for instance a sigmoid function
F (x) = tanh(b+ x)
• Multilayer feedforward ((m− 1) hidden layer):

yyy = F (WWWm . . . F (WWW 2F (WWW 1xxx))

• Neural networks are universal function approximators (e.g.
Hornik 1981)

Time series analysis 22/31



Recurrent neural networks

• Feed forward networks are representations for a function
between the input and the output.
• Recurrent neural networks contain not only feed forward, but
also feedback connections.
• Lets call the state of the hidden nodes zzz and they are
connected accordig to a weighted adjacency matrix

zzzn+1 = F (AAAzzzn +WWWxxxn)
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Recurrent neural networks Reservoir computing

• Lets call the state of the hidden nodes zzz and they are
connected accordig to a weighted adjacency matrix

zzzn+1 = F (AAAzzzn +WWWxxxn)

• Echo state networks (Jaeger 2001) or liquid state machine
(Maass et al. 2002)
• A is a sparse random matrix
• zzz is the reservoir state
• There is an additional output layer

yyyn = F (WWW outzzzn)

• Only the weights of WWW out are learned.
• Echo state property: the reservoir will asymptotically "forget"

all information from initial conditions.
• Time series prediction: yn = xn+1. Open loop training, closed

loop prediction.
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Long Short-term memory (LSTM)

• Recurrent neural network (RNN) for processing sequences of
data (text, speech, time series)
• Designed to overcome the "vanishing gradient problem" that
is encountered when training RNNs with backpropagation
• Ingredients:

• Cell state for long-term memory
• Input, output an forget gate
• How does it work?
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Long Short-term memory (LSTM)
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Long Short-term memory (LSTM) Forget Gate
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Long Short-term memory (LSTM) Input Gate
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Long Short-term memory (LSTM) Output Gate
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Long Short-term memory (LSTM)

• Recurrent neural network (RNN) for processing sequences of
data (text, speech, time series)
• Designed to overcome the "vanishing gradient problem" that
is encountered when training RNNs with backpropagation
• Ingredients:

• Cell state for long-term memory
• Input, output an forget gate
• How does it work?
• Time series predictions are created by a read-out layer on the

hidden state similar to the echo state network
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Software

• Linear time series analysis (spectral analysis, linear models)
are available in all standard software packages, e.g. in matlab
• Nonlinear time series analysis

• TISEAN - works with unix/linux and needs a FOTRAN
compiler, difficult with Windows

• Julia software library Dynamical Systems.jl
• Java Information Dynamics Toolkit
• Tigramite - Causal discovery for time series datasets - a

phython package by Jakob Runge
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https://www.pks.mpg.de/tisean/Tisean_3.0.1/index.html
https://juliadynamics.github.io/DynamicalSystems.jl/dev/
http://jlizier.github.io/jidt/
https://github.com/jakobrunge/tigramite

